Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
1.
Arch Microbiol ; 206(4): 173, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38492040

RESUMO

Using microalgal growth-promoting bacteria (MGPB) to improve the cultured microalga metabolism during biotechnological processes is one of the most promising strategies to enhance their benefits. Nonetheless, the culture condition effect used during the biotechnological process on MGPB growth and metabolism is key to ensure the expected positive bacterium growth and metabolism of microalgae. In this sense, the present research study investigated the effect of the synthetic biogas atmosphere (75% CH4-25% CO2) on metabolic and physiological adaptations of the MGPB Azospirillum brasilense by a microarray-based transcriptome approach. A total of 394 A. brasilense differentially expressed genes (DEGs) were found: 201 DEGs (34 upregulated and 167 downregulated) at 24 h and 193 DEGs (140 upregulated and 53 downregulated) under the same conditions at 72 h. The results showed a series of A. brasilense genes regulating processes that could be essential for its adaptation to the early stressful condition generated by biogas. Evidence of energy production is shown by nitrate/nitrite reduction and activation of the hypothetical first steps of hydrogenotrophic methanogenesis; signal molecule modulation is observed: indole-3-acetic acid (IAA), riboflavin, and vitamin B6, activation of Type VI secretion system responding to IAA exposure, as well as polyhydroxybutyrate (PHB) biosynthesis and accumulation. Moreover, an overexpression of ipdC, ribB, and phaC genes, encoding the key enzymes for the production of the signal molecule IAA, vitamin riboflavin, and PHB production of 2, 1.5 and 11 folds, respectively, was observed at the first 24 h of incubation under biogas atmosphere Overall, the ability of A. brasilense to metabolically adapt to a biogas atmosphere is demonstrated, which allows its implementation for generating biogas with high calorific values and the use of renewable energies through microalga biotechnologies.


Assuntos
Azospirillum brasilense , Microalgas , Microalgas/genética , Biocombustíveis , Transcriptoma , Ácidos Indolacéticos/metabolismo , Perfilação da Expressão Gênica , Adaptação Fisiológica/genética , Riboflavina/genética , Riboflavina/metabolismo
2.
BMC Plant Biol ; 24(1): 220, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532321

RESUMO

BACKGROUND: Riboflavin is the precursor of several cofactors essential for normal physical and cognitive development, but only plants and some microorganisms can produce it. Humans thus rely on their dietary intake, which at a global level is mainly constituted by cereals (> 50%). Understanding the riboflavin biosynthesis players is key for advancing our knowledge on this essential pathway and can hold promise for biofortification strategies in major crop species. In some bacteria and in Arabidopsis, it is known that RibA1 is a bifunctional protein with distinct GTP cyclohydrolase II (GTPCHII) and 3,4-dihydroxy-2-butanone-4-phosphate synthase (DHBPS) domains. Arabidopsis harbors three RibA isoforms, but only one retained its bifunctionality. In rice, however, the identification and characterization of RibA has not yet been described. RESULTS: Through mathematical kinetic modeling, we identified RibA as the rate-limiting step of riboflavin pathway and by bioinformatic analysis we confirmed that rice RibA proteins carry both domains, DHBPS and GTPCHII. Phylogenetic analysis revealed that OsRibA isoforms 1 and 2 are similar to Arabidopsis bifunctional RibA1. Heterologous expression of OsRibA1 completely restored the growth of the rib3∆ yeast mutant, lacking DHBPS expression, while causing a 60% growth improvement of the rib1∆ mutant, lacking GTPCHII activity. Regarding OsRibA2, its heterologous expression fully complemented GTPCHII activity, and improved rib3∆ growth by 30%. In vitro activity assays confirmed that both OsRibA1 and OsRibA2 proteins carry GTPCHII/DHBPS activities, but that OsRibA1 has higher DHBPS activity. The overexpression of OsRibA1 in rice callus resulted in a 28% increase in riboflavin content. CONCLUSIONS: Our study elucidates the critical role of RibA in rice riboflavin biosynthesis pathway, establishing it as the rate-limiting step in the pathway. By identifying and characterizing OsRibA1 and OsRibA2, showcasing their GTPCHII and DHBPS activities, we have advanced the understanding of riboflavin biosynthesis in this staple crop. We further demonstrated that OsRibA1 overexpression in rice callus increases its riboflavin content, providing supporting information for bioengineering efforts.


Assuntos
Arabidopsis , Oryza , Humanos , Riboflavina/genética , Riboflavina/metabolismo , Sequência de Aminoácidos , GTP Cicloidrolase/genética , GTP Cicloidrolase/metabolismo , Oryza/metabolismo , Arabidopsis/metabolismo , Filogenia , Isoformas de Proteínas/metabolismo
3.
J Hum Genet ; 69(3-4): 125-131, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38228875

RESUMO

Lipid storage myopathy (LSM) is a heterogeneous group of lipid metabolism disorders predominantly affecting skeletal muscle by triglyceride accumulation in muscle fibers. Riboflavin therapy has been shown to ameliorate symptoms in some LSM patients who are essentially concerned with multiple acyl-CoA dehydrogenation deficiency (MADD). It is proved that riboflavin responsive LSM caused by MADD is mainly due to ETFDH gene variant (ETFDH-RRMADD). We described here a case with riboflavin responsive LSM and MADD resulting from FLAD1 gene variants (c.1588 C > T p.Arg530Cys and c.1589 G > C p.Arg530Pro, FLAD1-RRMADD). And we compared our patient together with 9 FLAD1-RRMADD cases from literature to 106 ETFDH-RRMADD cases in our neuromuscular center on clinical history, laboratory investigations and pathological features. Furthermore, the transcriptomics study on FLAD1-RRMADD and ETFDH-RRMADD were carried out. On muscle pathology, both FLAD1-RRMADD and ETFDH-RRMADD were proved with lipid storage myopathy in which atypical ragged red fibers were more frequent in ETFDH-RRMADD, while fibers with faint COX staining were more common in FLAD1-RRMADD. Molecular study revealed that the expression of GDF15 gene in muscle and GDF15 protein in both serum and muscle was significantly increased in FLAD1-RRMADD and ETFDH-RRMADD groups. Our data revealed that FLAD1-RRMADD (p.Arg530) has similar clinical, biochemical, and fatty acid metabolism changes to ETFDH-RRMADD except for muscle pathological features.


Assuntos
Proteínas Ferro-Enxofre , Erros Inatos do Metabolismo Lipídico , Deficiência Múltipla de Acil Coenzima A Desidrogenase , Distrofias Musculares , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Humanos , Acil Coenzima A/genética , Acil Coenzima A/metabolismo , Acil Coenzima A/uso terapêutico , Flavoproteínas Transferidoras de Elétrons/genética , Flavoproteínas Transferidoras de Elétrons/metabolismo , Proteínas Ferro-Enxofre/genética , Deficiência Múltipla de Acil Coenzima A Desidrogenase/diagnóstico , Deficiência Múltipla de Acil Coenzima A Desidrogenase/tratamento farmacológico , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Mutação , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Riboflavina/genética , Riboflavina/metabolismo , Riboflavina/uso terapêutico
4.
Int J Mol Sci ; 24(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37958826

RESUMO

Diagnostic uncertainty and relapse rates in schizophrenia and schizoaffective disorder are relatively high, indicating the potential involvement of other pathological mechanisms that could serve as diagnostic indicators to be targeted for adjunctive treatment. This study aimed to seek objective evidence of methylenetetrahydrofolate reductase MTHFR C677T genotype-related bio markers in blood and urine. Vitamin and mineral cofactors related to methylation and indolamine-catecholamine metabolism were investigated. Biomarker status for 67 symptomatically well-defined cases and 67 asymptomatic control participants was determined using receiver operating characteristics, Spearman's correlation, and logistic regression. The 5.2%-prevalent MTHFR 677 TT genotype demonstrated a 100% sensitive and specific case-predictive biomarkers of increased riboflavin (vitamin B2) excretion. This was accompanied by low plasma zinc and indicators of a shift from low methylation to high methylation state. The 48.5% prevalent MTHFR 677 CC genotype model demonstrated a low-methylation phenotype with 93% sensitivity and 92% specificity and a negative predictive value of 100%. This model related to lower vitamin cofactors, high histamine, and HPLC urine indicators of lower vitamin B2 and restricted indole-catecholamine metabolism. The 46.3%-prevalent CT genotype achieved high predictive strength for a mixed methylation phenotype. Determination of MTHFR C677T genotype dependent functional biomarker phenotypes can advance diagnostic certainty and inform therapeutic intervention.


Assuntos
Transtornos Psicóticos , Esquizofrenia , Humanos , Esquizofrenia/diagnóstico , Esquizofrenia/genética , Ácido Fólico/metabolismo , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Genótipo , Biomarcadores , Transtornos Psicóticos/diagnóstico , Transtornos Psicóticos/genética , Riboflavina/uso terapêutico , Riboflavina/genética , Vitaminas , Catecolaminas
5.
Neuromolecular Med ; 25(4): 489-500, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37603145

RESUMO

AIFM1 is a mitochondrial flavoprotein involved in caspase-independent cell death and regulation of respiratory chain complex biogenesis. Mutations in the AIFM1 gene have been associated with multiple clinical phenotypes, but the effectiveness of riboflavin treatment remains controversial. Furthermore, few studies explored the reasons underlying this controversy. We reported a 7-year-old boy with ataxia, sensorimotor neuropathy and muscle weakness. Genetic and histopathological analyses were conducted, along with assessments of mitochondrial function and apoptosis level induced by staurosporine. Riboflavin deficiency and supplementation experiments were performed using fibroblasts. A missense c.1019T > C (p. Met340Thr) variant of AIFM1 was detected in the proband, which caused reduced expression of AIFM1 protein and mitochondrial dysfunction as evidenced by downregulation of mitochondrial complex subunits, respiratory deficiency and collapse of ΔΨm. The proportion of apoptotic cells in mutant fibroblasts was lower than controls after induction of apoptosis. Riboflavin deficiency resulted in decreased AIFM1 protein levels, while supplementation with high concentrations of riboflavin partially increased AIFM1 protein levels in variant fibroblasts. In addition, mitochondrial respiratory function of mutant fibroblasts was partly improved after riboflavin supplementation. Our study elucidated the pathogenicity of the AIFM1 c.1019T > C variant and revealed mutant fibroblasts was intolerant to riboflavin deficiency. Riboflavin supplementation is helpful in maintaining the level of AIFM1 protein and mitochondrial respiratory function. Early riboflavin treatment may serve as a valuable attempt for patients with AIFM1 variant.


Assuntos
Doenças Mitocondriais , Deficiência de Riboflavina , Masculino , Humanos , Criança , Deficiência de Riboflavina/genética , Deficiência de Riboflavina/metabolismo , Riboflavina/uso terapêutico , Riboflavina/genética , Riboflavina/metabolismo , Mutação de Sentido Incorreto , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Fator de Indução de Apoptose/genética , Fator de Indução de Apoptose/metabolismo
6.
ACS Synth Biol ; 12(6): 1727-1738, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37212667

RESUMO

Shewanella oneidensis MR-1 is a promising electroactive microorganism in environmental bioremediation, bioenergy generation, and bioproduct synthesis. Accelerating the extracellular electron transfer (EET) pathway that enables efficient electron exchange between microbes and extracellular substances is critical for improving its electrochemical properties. However, the potential genomic engineering strategies for enhancing EET capabilities are still limited. Here, we developed a clustered regularly interspaced short palindromic repeats (CRISPR)-mediated dual-deaminase base editing system, named in situ protospacer-adjacent motif (PAM)-flexible dual base editing regulatory system (iSpider), for precise and high-throughput genomic manipulation. The iSpider enabled simultaneous C-to-T and A-to-G conversions with high diversity and efficiency in S. oneidensis. By weakening DNA glycosylase-based repair pathway and tethering two copies of adenosine deaminase, the A-to-G editing efficiency was obviously improved. As a proof-of-concept study, the iSpider was adapted to achieve multiplexed base editing for the regulation of the riboflavin biosynthesis pathway, and the optimized strain showed an approximately three-fold increase in riboflavin production. Moreover, the iSpider was also applied to evolve the performance of an inner membrane component CymA implicated in EET, and one beneficial mutant facilitating electron transfer could be rapidly identified. Taken together, our study demonstrates that the iSpider allows efficient base editing in a PAM-flexible manner, providing insights into the design of novel genomic tools for Shewanella engineering.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Shewanella , Transporte de Elétrons/genética , Elétrons , Shewanella/genética , Shewanella/metabolismo , Riboflavina/genética
7.
Stem Cell Res ; 69: 103067, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37019029

RESUMO

Mutations in the ETFDH gene, encoding electron transfer flavoprotein dehydrogenase, have been identified to cause riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency (RR-MADD) (Wen et al., 2010). We performed the generation and characterization of human induced pluripotent stem cell (iPSC) line from skin fibroblasts of a patient with RR-MADD carrying two heterozygous ETFDH mutations (p.D130V and p.A84V). Their pluripotency was verified by the expression of several pluripotency markers on RNA and protein levels and the capability to differentiate into all three germ layers.


Assuntos
Células-Tronco Pluripotentes Induzidas , Proteínas Ferro-Enxofre , Deficiência Múltipla de Acil Coenzima A Desidrogenase , Humanos , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Deficiência Múltipla de Acil Coenzima A Desidrogenase/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Flavoproteínas Transferidoras de Elétrons/genética , Flavoproteínas Transferidoras de Elétrons/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Mutação/genética , Riboflavina/genética , Riboflavina/metabolismo
8.
Microb Biotechnol ; 16(5): 1011-1026, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36965151

RESUMO

The growing need of next generation feedstocks for biotechnology spurs an intensification of research on the utilization of methanol as carbon and energy source for biotechnological processes. In this paper, we introduced the methanol-based overproduction of riboflavin into metabolically engineered Bacillus methanolicus MGA3. First, we showed that B. methanolicus naturally produces small amounts of riboflavin. Then, we created B. methanolicus strains overexpressing either homologous or heterologous gene clusters encoding the riboflavin biosynthesis pathway, resulting in riboflavin overproduction. Our results revealed that the supplementation of growth media with sublethal levels of chloramphenicol contributes to a higher plasmid-based riboflavin production titre, presumably due to an increase in plasmid copy number and thus biosynthetic gene dosage. Based on this, we proved that riboflavin production can be increased by exchanging a low copy number plasmid with a high copy number plasmid leading to a final riboflavin titre of about 523 mg L-1 in methanol fed-batch fermentation. The findings of this study showcase the potential of B. methanolicus as a promising host for methanol-based overproduction of extracellular riboflavin and serve as basis for metabolic engineering of next generations of riboflavin overproducing strains.


Assuntos
Engenharia Metabólica , Metanol , Metanol/metabolismo , Plasmídeos , Biotecnologia/métodos , Riboflavina/genética
9.
Bioresour Technol ; 381: 128774, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36822556

RESUMO

Flavin mononucleotide (FMN) is the active form of riboflavin. It has a wide range of application scenarios in the pharmaceutical and food additives. However, there are limitations in selecting generic high-throughput screening platforms that improve the properties of enzymes. First, the biosensor in response to FMN concentration was constructed using the FMN riboswitch and confirmed the function of this sensor. Next, the FMN binding site of the sensor was saturated with a mutation that increased its fluorescence range by approximately 127%. Then, the biosensor and the base editing system based on T7RNAP were combined to construct a platform for rapid mutation and screening of riboflavin kinase gene ribC mutants. The mutants screened using this platform increased the yield of FMN by 8-fold. These results indicate that the high-throughput screening platform can rapidly and effectively improve the activity of target enzymes, and provide a new route for screening industrial enzymes.


Assuntos
Mononucleotídeo de Flavina , Riboswitch , Mononucleotídeo de Flavina/genética , Mononucleotídeo de Flavina/metabolismo , Riboswitch/genética , Riboflavina/genética , Riboflavina/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Flavina-Adenina Dinucleotídeo/genética , Flavina-Adenina Dinucleotídeo/metabolismo
10.
Plant Cell Environ ; 46(3): 991-1003, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36578264

RESUMO

Iron (Fe) is an essential micronutrient, and deficiency in available Fe is one of the most important limiting factors for plant growth. In some species including Medicago truncatula, Fe deficiency results in accumulation of riboflavin, a response associated with Fe acquisition. However, how the plant's Fe status is integrated to tune riboflavin biosynthesis and how riboflavin levels affect Fe acquisition and utilization remains largely unexplored. We report that protein kinase CIPK12 regulates ferric reduction by accumulation of riboflavin and its derivatives in roots of M. truncatula via physiological and molecular characterization of its mutants and over-expressing materials. Mutations in CIPK12 enhance Fe accumulation and improve photosynthetic efficiency, whereas overexpression of CIPK12 shows the opposite phenotypes. The Calcineurin B-like proteins CBL3 and CBL8 interact with CIPK12, which negatively regulates the expression of genes encoding key enzymes in the riboflavin biosynthesis pathway. CIPK12 negatively regulates Fe acquisition by suppressing accumulation of riboflavin and its derivatives in roots, which in turn influences ferric reduction activity by riboflavin-dependent electron transport under Fe deficiency. Our findings uncover a new regulatory mechanism by which CIPK12 regulates riboflavin biosynthesis and Fe-deficiency responses in plants.


Assuntos
Deficiências de Ferro , Medicago truncatula , Medicago truncatula/metabolismo , Proteínas Quinases/metabolismo , Riboflavina/genética , Riboflavina/metabolismo , Ferro/metabolismo , Eletrólitos/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
Free Radic Res ; 56(7-8): 511-525, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36480241

RESUMO

Flavin adenine dinucleotide (FAD) synthase (EC 2.7.7.2), encoded by human flavin adenine dinucleotide synthetase 1 (FLAD1), catalyzes the last step of the pathway converting riboflavin (Rf) into FAD. FLAD1 variations were identified as a cause of LSMFLAD (lipid storage myopathy due to FAD synthase deficiency, OMIM #255100), resembling Multiple Acyl-CoA Dehydrogenase Deficiency, sometimes treatable with high doses of Rf; no alternative therapeutic strategies are available. We describe here cell morphological and mitochondrial alterations in dermal fibroblasts derived from a LSMFLAD patient carrying a homozygous truncating FLAD1 variant (c.745C > T) in exon 2. Despite a severe decrease in FAD synthesis rate, the patient had decreased cellular levels of Rf and flavin mononucleotide and responded to Rf treatment. We hypothesized that disturbed flavin homeostasis and Rf-responsiveness could be due to a secondary impairment in the expression of the Rf transporter 2 (RFVT2), encoded by SLC52A2, in the frame of an adaptive retrograde signaling to mitochondrial dysfunction. Interestingly, an antioxidant response element (ARE) is found in the region upstream of the transcriptional start site of SLC52A2. Accordingly, we found that abnormal mitochondrial morphology and impairments in bioenergetics were accompanied by increased cellular reactive oxygen species content and mtDNA oxidative damage. Concomitantly, an active response to mitochondrial stress is suggested by increased levels of PPARγ-co-activator-1α and Peroxiredoxin III. In this scenario, the treatment with high doses of Rf might compensate for the secondary RFVT2 molecular defect, providing a molecular rationale for the Rf responsiveness in patients with loss of function variants in FLAD1 exon 2.HIGHLIGHTSFAD synthase deficiency alters mitochondrial morphology and bioenergetics;FAD synthase deficiency triggers a mitochondrial retrograde response;FAD synthase deficiency evokes nuclear signals that adapt the expression of RFVT2.


Assuntos
Flavina-Adenina Dinucleotídeo , Deficiência Múltipla de Acil Coenzima A Desidrogenase , Humanos , Flavina-Adenina Dinucleotídeo/genética , Flavina-Adenina Dinucleotídeo/metabolismo , Flavina-Adenina Dinucleotídeo/uso terapêutico , Riboflavina/genética , Riboflavina/metabolismo , Riboflavina/uso terapêutico , Deficiência Múltipla de Acil Coenzima A Desidrogenase/tratamento farmacológico , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Deficiência Múltipla de Acil Coenzima A Desidrogenase/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Éxons , Mononucleotídeo de Flavina/genética , Mononucleotídeo de Flavina/uso terapêutico
12.
Stem Cell Res ; 64: 102914, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36162333

RESUMO

Multiple acyl-coenzyme A dehydrogenase deficiency (MADD) is an inborn metabolic disorder that affects fatty acid oxidation and the catabolism of branched-chain amino acids, vitamins B and energy metabolism. In this study, the induced pluripotent stem cell (iPSC) line LZUSHi002-A from PBMCs of a 10-year-old male patient with ETFDH mutations using the episomal plasmids was established, which is an ideal in vitro model to understand the exact pathogenesis of MADD.


Assuntos
Células-Tronco Pluripotentes Induzidas , Proteínas Ferro-Enxofre , Deficiência Múltipla de Acil Coenzima A Desidrogenase , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Masculino , Humanos , Criança , Células-Tronco Pluripotentes Induzidas/metabolismo , Flavoproteínas Transferidoras de Elétrons/genética , Flavoproteínas Transferidoras de Elétrons/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Acil-CoA Desidrogenase/genética , Acil-CoA Desidrogenase/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Riboflavina/genética , Riboflavina/metabolismo , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Deficiência Múltipla de Acil Coenzima A Desidrogenase/metabolismo , Mutação/genética , Ácidos Graxos/metabolismo , Vitaminas , Aminoácidos de Cadeia Ramificada/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/genética , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/metabolismo
13.
Nutrients ; 14(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36014863

RESUMO

Riboflavin is an essential micronutrient and a precursor of flavin mononucleotide and flavin adenine dinucleotide for maintaining cell homeostasis. Riboflavin deficiency (RD) induces cell apoptosis. Endoplasmic reticulum (ER) stress is considered to induce apoptosis, and C/EBP homologous protein (CHOP) is a key pathway involved in this process. However, whether RD-induced apoptosis is mediated by ER stress and the CHOP pathway remains unclear and needs further investigation. Therefore, the current study presents the effect of RD on ER stress and apoptosis in the human hepatoma cell line (HepG2). Firstly, cells were cultured in a RD medium (4.55 nM riboflavin) and a control (CON) medium (1005 nM riboflavin). We conducted an observation of cell microstructure characterization and determining apoptosis. Subsequently, 4-phenyl butyric acid (4-PBA), an ER stress inhibitor, was used in HepG2 cells to investigate the role of ER stress in RD-induced apoptosis. Finally, CHOP siRNA was transfected into HepG2 cells to validate whether RD triggered ER stress-mediated apoptosis by the CHOP pathway. The results show that RD inhibited cell proliferation and caused ER stress, as well as increased the expression of ER stress markers (CHOP, 78 kDa glucose-regulated protein, activating transcription factor 6) (p < 0.05). Furthermore, RD increased the cell apoptosis rate, enhanced the expression of proapoptotic markers (B-cell lymphoma 2-associated X, Caspase 3), and decreased the expression of the antiapoptotic marker (B-cell lymphoma 2) (p < 0.05). The 4-PBA treatment and CHOP knockdown markedly alleviated RD-induced cell apoptosis. These results demonstrate that RD induces cell apoptosis by triggering ER stress and the CHOP pathway.


Assuntos
Apoptose , Estresse do Retículo Endoplasmático , Deficiência de Riboflavina , Riboflavina , Fator de Transcrição CHOP , Apoptose/genética , Estresse do Retículo Endoplasmático/genética , Células Hep G2 , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Riboflavina/genética , Riboflavina/metabolismo , Riboflavina/farmacologia , Deficiência de Riboflavina/genética , Deficiência de Riboflavina/fisiopatologia , Transdução de Sinais , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo
14.
BMC Biol ; 20(1): 186, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-36002843

RESUMO

BACKGROUND: Karat (Musa troglodytarum L.) is an autotriploid Fe'i banana of the Australimusa section. Karat was domesticated independently in the Pacific region, and karat fruit are characterized by a pink sap, a deep yellow-orange flesh colour, and an abundance of ß-carotene. Karat fruit showed non-climacteric behaviour, with an approximately 215-day bunch filling time. These features make karat a valuable genetic resource for studying the mechanisms underlying fruit development and ripening and carotenoid biosynthesis. RESULTS: Here, we report the genome of M. troglodytarum, which has a total length of 603 Mb and contains 37,577 predicted protein-coding genes. After divergence from the most recent common ancestors, M. troglodytarum (T genome) has experienced fusion of ancestral chromosomes 8 and 9 and multiple translocations and inversions, unlike the high synteny with few rearrangements found among M. schizocarpa (S genome), M. acuminata (A genome) and M. balbisiana (B genome). Genome microsynteny analysis showed that the triplication of MtSSUIIs due to chromosome rearrangement may lead to the accumulation of carotenoids and ABA in the fruit. The expression of duplicated MtCCD4s is repressed during ripening, leading to the accumulation of α-carotene, ß-carotene and phytoene. Due to a long terminal repeat (LTR)-like fragment insertion upstream of MtERF11, karat cannot produce large amounts of ethylene but can produce ABA during ripening. These lead to non-climacteric behaviour and prolonged shelf-life, which contributes to an enrichment of carotenoids and riboflavin. CONCLUSIONS: The high-quality genome of M. troglodytarum revealed the genomic basis of non-climacteric behaviour and enrichment of carotenoids, riboflavin, flavonoids and free galactose and provides valuable resources for further research on banana domestication and breeding and the improvement of nutritional and bioactive qualities.


Assuntos
Musa , Carotenoides/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Musa/genética , Musa/metabolismo , Melhoramento Vegetal , Riboflavina/genética , Riboflavina/metabolismo , beta Caroteno/metabolismo
15.
Metab Eng ; 73: 158-167, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35863619

RESUMO

Coenzyme F420 is involved in bioprocesses such as biosynthesis of antibiotics by streptomycetes, prodrug activation in Mycobacterium tuberculosis, and methanogenesis in archaea. F420-dependent enzymes also attract interest as biocatalysts in organic chemistry. However, as only low F420 levels are produced in microorganisms, F420 availability is a serious bottleneck for research and application. Recent advances in our understanding of the F420 biosynthesis enabled heterologous overproduction of F420 in Escherichia coli, but the yields remained moderate. To address this issue, we rationally designed a synthetic operon for F420 biosynthesis in E. coli. However, it still led to the production of low amounts of F420 and undesired side-products. In order to strongly improve yield and purity, a screening approach was chosen to interrogate the gene expression-space of a combinatorial library based on diversified promotors and ribosome binding sites. The whole pathway was encoded by a two-operon construct. The first module ("core") addressed parts of the riboflavin biosynthesis pathway and FO synthase for the conversion of GTP to the stable F420 intermediate FO. The enzymes of the second module ("decoration") were chosen to turn FO into F420. The final construct included variations of T7 promoter strengths and ribosome binding site activity to vary the expression ratio for the eight genes involved in the pathway. Fluorescence-activated cell sorting was used to isolate clones of this library displaying strong F420-derived fluorescence. This approach yielded the highest titer of coenzyme F420 produced in the widely used organism E. coli so far. Production in standard LB medium offers a highly effective and simple production process that will facilitate basic research into unexplored F420-dependent bioprocesses as well as applications of F420-dependent enzymes in biocatalysis.


Assuntos
Escherichia coli , Riboflavina , Escherichia coli/genética , Escherichia coli/metabolismo , Fluorescência , Expressão Gênica , Riboflavina/análogos & derivados , Riboflavina/genética
16.
J Hum Nutr Diet ; 35(4): 689-700, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35821207

RESUMO

BACKGROUND: The C677T polymorphism in the gene-encoding methylenetetrahydrofolate reductase (MTHFR) is associated with an increased risk of hypertension and cardiovascular disease. Riboflavin, the MTHFR cofactor, is an important modulator of blood pressure (BP) in adults homozygous for this polymorphism (TT genotype). The effect of this genetic variant on BP and related central haemodynamic parameters in healthy adults has not been previously investigated and was examined in this study. METHODS: Brachial BP, central BP and pulse wave velocity (PWV, SphygmoCor XCEL) were measured in adults aged 18-65 years prescreened for MTHFR genotype. Riboflavin status was assessed using the erythrocyte glutathione reductase activation coefficient assay. RESULTS: Two hundred and forty-two adults with the MTHFR 677TT genotype and age-matched non-TT (CC/CT) genotype controls were identified from a total cohort of 2546 adults prescreened for MTHFR genotype. The TT genotype was found to be an independent determinant of hypertension (p = 0.010), along with low-riboflavin status (p = 0.002). Brachial systolic and diastolic BP were higher in TT versus non-TT adults by 5.5 ± 1.2 and 2.4 ± 0.9 mmHg, respectively (both p < 0.001). A stronger phenotype was observed in women, with an almost 10 mmHg difference in mean systolic BP in TT versus non-TT genotype groups: 134.9 (95% confidence interval [CI] 132.1-137.6) versus 125.2 (95% CI 122.3-128.0) mmHg; p < 0.001. In addition, PWV was faster in women with the TT genotype (p = 0.043). CONCLUSION: This study provides the first evidence that brachial and central BP are significantly higher in adults with the variant MTHFR 677TT genotype and that the BP phenotype is more pronounced in women.


Assuntos
Hipertensão , Metilenotetra-Hidrofolato Redutase (NADPH2) , Pressão Sanguínea/genética , Feminino , Genótipo , Humanos , Hipertensão/genética , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Metilenotetra-Hidrofolato Redutase (NADPH2)/farmacologia , Análise de Onda de Pulso , Riboflavina/genética , Riboflavina/farmacologia
17.
Biotechnol Bioeng ; 119(10): 2806-2818, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35798677

RESUMO

Shewanella oneidensis MR-1, as a model exoelectrogen with divergent extracellular electron transfer (EET) pathways, has been widely used in microbial fuel cells (MFCs). The electron transfer rate is largely determined by riboflavin (RF) and c-type cytochromes (c-Cyts). However, relatively low RF production and inappropriate amount of c-Cyts substantially impede the capacity of improving the EET rate. In this study, coupling of riboflavin de novo biosynthesis and c-Cyts expression was implemented to enhance the efficiency of EET in S. oneidensis. First, the upstream pathway of RF de novo biosynthesis was divided into four modules, and the expression level of 22 genes in above four modules was fine-tuned by employing promoters with different strengths. Among them, genes zwf*, glyA, and ybjU which exhibited optimal RF production were combinatorially overexpressed, leading to the enhancement of maximum output power density by 166%. Second, the diverse c-Cyts genes were overexpressed to match high RF production, and omcA was selected for further combination. Third, RF de novo biosynthesis and c-Cyts expression were combined, resulting in 2.34-fold higher power output than the parent strain. This modular and combinatorial manipulation strategy provides a generalized reference to advance versatile practical applications of electroactive microorganisms.


Assuntos
Elétrons , Shewanella , Citocromos/metabolismo , Transporte de Elétrons , Riboflavina/genética , Riboflavina/metabolismo , Shewanella/genética , Shewanella/metabolismo
18.
J Biol Chem ; 298(8): 102182, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35752362

RESUMO

The ion-pumping NQR complex is an essential respiratory enzyme in the physiology of many pathogenic bacteria. This enzyme transfers electrons from NADH to ubiquinone through several cofactors, including riboflavin (vitamin B2). NQR is the only enzyme reported that is able to use riboflavin as a cofactor. Moreover, the riboflavin molecule is found as a stable neutral semiquinone radical. The otherwise highly reactive unpaired electron is stabilized via an unknown mechanism. Crystallographic data suggested that riboflavin might be found in a superficially located site in the interface of NQR subunits B and E. However, this location is highly problematic, as the site does not have the expected physiochemical properties. In this work, we have located the riboflavin-binding site in an amphipathic pocket in subunit B, previously proposed to be the entry site of sodium. Here, we show that this site contains absolutely conserved residues, including N200, N203, and D346. Mutations of these residues decrease enzymatic activity and specifically block the ability of NQR to bind riboflavin. Docking analysis and molecular dynamics simulations indicate that these residues participate directly in riboflavin binding, establishing hydrogen bonds that stabilize the cofactor in the site. We conclude that riboflavin is likely bound in the proposed pocket, which is consistent with enzymatic characterizations, thermodynamic studies, and distance between cofactors.


Assuntos
Quinona Redutases , Vibrio cholerae , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Oxirredução , Quinona Redutases/química , Riboflavina/genética , Sódio/metabolismo , Vibrio cholerae/metabolismo
19.
J Clin Neuromuscul Dis ; 23(4): 205-209, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35608644

RESUMO

ABSTRACT: We present the electrodiagnostic findings in a case of a 3-year-old girl presenting with sensory ataxia, gait disturbance, and visual-auditory disturbance with a genetically confirmed diagnosis of riboflavin transporter deficiency type 2 (RTD2). She carries a homozygous mutation in the SLC52A2 gene, c.1016T>C (p.Leu339Pro). Her testing demonstrates a non-length-dependent axonal sensorimotor polyneuropathy affecting predominantly the upper extremities with active denervation of the distal muscles of both arms. It is important to highlight these findings because most genetic neuropathies have a length-dependent pattern of involvement, affecting the distal legs before the arms. The electrodiagnostic findings in RTD2 have not been previously well described. These electrodiagnostic findings are in agreement with the typical clinical phenotype of RTD2, which affects the upper limbs and bulbar muscles more than the lower extremities.


Assuntos
Paralisia Bulbar Progressiva , Perda Auditiva Neurossensorial , Paralisia Bulbar Progressiva/diagnóstico , Paralisia Bulbar Progressiva/genética , Feminino , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/genética , Homozigoto , Humanos , Mutação/genética , Riboflavina/genética
20.
Plant Biotechnol J ; 20(8): 1487-1501, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35426230

RESUMO

Riboflavin is the precursor of essential cofactors for diverse metabolic processes. Unlike animals, plants can de novo produce riboflavin through an ancestrally conserved pathway, like bacteria and fungi. However, the mechanism by which riboflavin regulates seed development is poorly understood. Here, we report a novel maize (Zea mays L.) opaque mutant o18, which displays an increase in lysine accumulation, but impaired endosperm filling and embryo development. O18 encodes a rate-limiting bifunctional enzyme ZmRIBA1, targeted to plastid where to initiate riboflavin biosynthesis. Loss of function of O18 specifically disrupts respiratory complexes I and II, but also decreases SDH1 flavinylation, and in turn shifts the mitochondrial tricarboxylic acid (TCA) cycle to glycolysis. The deprivation of cellular energy leads to cell-cycle arrest at G1 and S phases in both mitosis and endoreduplication during endosperm development. The unexpected up-regulation of cell-cycle genes in o18 correlates with the increase of H3K4me3 levels, revealing a possible H3K4me-mediated epigenetic back-up mechanism for cell-cycle progression under unfavourable circumstances. Overexpression of O18 increases riboflavin production and confers osmotic tolerance. Altogether, our results substantiate a key role of riboflavin in coordinating cellular energy and cell cycle to modulate maize endosperm development.


Assuntos
Endosperma , Zea mays , Ciclo Celular/genética , Endosperma/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Riboflavina/genética , Riboflavina/metabolismo , Sementes , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...